Newton's 2nd Law Activity

Purpose

Students will begin exploring the reason the tension of a string connecting a hanging mass to an object will be different depending on whether the object is stationary or accelerating. Students will also use Newton's 2nd Law to experimentally predict the mass of a PASCO cart.

Part I: Description of the Equipment and how it will be used to Collect Data

Before collecting data, it is recommended to review the list of hints that are located on the first page of the Data Sheet.

Log on to the computer and choose the COSAM pool. Double click the 'phy-lab' icon on the desktop, and open the PASCO Capstone program. Under File, select Open Experiment, choose the file folder named "capstone-activities", and then select the <u>Newtons 2nd Law Activity</u>. After the file opens, there should be two graphs ready to collect data. One graph will be Position vs time, and the other graph should be Force vs time.

A Force Sensor attached to a Cart, a Track, a Smart Pulley, some masses, and a string will be provided. The cart and track are designed to be nearly frictionless.

The force sensor attached to the cart will collect Tension data. The force sensor should be plugged into 'port A' of the PASCO Interface. Tension is a force, and the data collected will have units of Newtons. It is very important that the force sensor be TARED (zeroed) before each run. Before each run, the TARE button on the side of the force sensor must be pressed and held for a couple of seconds without any force or tension acting on the hook. While data is being collected, it is very important to hold the cord of the force sensor such that it does not drag or exert any forces on the cart. After a run, check the force data to make sure it seems reasonable. The force should not be zero or negative. If the data is suspect, click on the button "Delete Last Data Run" located near the bottom of the screen, and rerun the trial making sure the force sensor was TARED and the cord is not exerting a force on the cart.

The Smart Pulley at the end of the track will collect position vs time data. After the Record Button is clicked, data will be collected over a distance of 0.25m. Capstone will automatically stop collecting data after the cart has traveled 0.25m. Make sure the cart and hanging mass can move unobstructed for 0.25 m after the Record Button has been clicked. Do not allow the cart to crash into the end stop and/or the Smart Pulley. The Smart

Pulley must be connected to 'port #1' of the PASCO Interface via a photogate cord. The cord should be hanging in the room. Set the height of the pulley such that the portion of the string that is over the track will be parallel to the track.

Part II: Verifying the Calibration of the Force Sensor and Exploring Static vs Dynamic Tensions (20pts total)

If the cart is prevented from moving either by holding the cart or due to frictional forces when a hanging mass is attached, the tension in the string should be equal to \underline{mg} , where \underline{m} is the hanging mass and \underline{g} is the acceleration due to gravity. For our purposes this tension will be defined as the Static Tension.

However if the cart is accelerating, the tension in the string will not be equal to the static tension. For our purposes, the tension of the string when the cart is accelerating will be defined as the Dynamic Tension.

If you have not already learned how to use Free Body Diagrams to set-up equations of motion, you will in the near future. For a level, frictionless surface, you will be able to determine the following equations of motion for the cart and the hanging mass from your free body diagrams.

$$F_{Net \ cart} = Ma = T$$
 $F_{Net \ hanging \ mass} = ma = mg - T$

Where \underline{T} is the tension of the string, \underline{M} is the mass of the cart, \underline{m} is the hanging mass, \underline{a} is the acceleration of the cart and the hanging mass, and \underline{g} is the acceleration due to gravity.

Note that $F_{\text{Net cart}}$ is not equal to $F_{\text{Net hanging mass}}$ when the cart is accelerating. The equations above can simply be expressed as:

$$Ma = T$$
 and $ma = mg - T$

If these equations are solved simultaneously, the dynamic tension can be shown to be:

$$T = \left(\frac{Mm}{M+m}\right)g$$
 or $T = \left(\frac{M}{M+m}\right)mg$

You will now collect some Static Tension Data and Dynamic Tension Data. Make sure that the Force Sensor and the Smart Pulley are connected to the PASCO Interface.

TARE the force sensor and hang 50 g on the string. While the cart is being held in place, click the Record Button and collect data for approximately 2 seconds. After 2 seconds, click the Stop button. Neither the string nor the hanging mass should be touched during the 2 seconds. Record the average Static Tension on your Data Sheet. Calculate the Static Tension and compare it to the force sensor's measurement. If there is a significant difference, re-TARE the force sensor and collect data again. Also, check the hanging mass to make sure it is 50g. After the group is satisfied that the two values are comparable, data will be collected while the cart is in motion, and the two tensions on the graph will be compared. Before releasing the cart, TARE the force sensor. Remember to TARE the force sensor without any force or tension acting on the hook.

Now, data will be collected while the cart is in motion. First, make sure the cart will be able to move unobstructed for at least 0.25 meters. Capstone will stop collecting data after the cart has traveled 0.25 m.

While a lab partner is holding the cart, press the Record Button. After Static Tension data has been displayed on the graph for approximately 2 seconds, release the cart. Capstone will automatically stop collecting data after the cart travels 0.25 meters.

Determine the average Dynamic Tension by highlighting the data that was captured while the cart was

accelerating. This can be done using the highlight tool that is in the tool bar of the Force vs time graph.

Click on the highlight tool, which are the box that appears on the graph to the data of interest, and size the box as appropriate. Only highlight data that was recorded while the cart was in motion. The mean (average) of the highlighted Tension data can be displayed to the left of the plotted data by clicking on each data set. Note: a new highlight tool will need to be opened for each data set for Part III.

Record the average Dynamic Tension that was produced by the hanging 50g mass on the data sheet. Is the Dynamic Tension equal to the Static Tension? Use an Algebraic expression to explain why the Dynamic Tension always has to be less than the Static Tension when a cart is accelerated by a hanging mass on a frictionless, level track. Before printing the plots of the Static and Dynamic Tensions, ask the TA to verify the data for Part II. After the TA verifies the data, print the Static and Dynamic Tension graph, and delete the data runs.

Part III: Data Collection for Newton's 2nd Law (20pts total)

By changing the hanging mass, the cart will accelerate at different rates.

The acceleration of the cart for each run can be determined from the position vs time plots. (Hint: Fit each plot with an appropriate line and/or curve and use the fit coefficients to determine the acceleration.)

Open a new Highlight Tool ¹² to determine the Dynamic Tension for each run.

Record the masses, accelerations, and tensions in the table on the Data Sheet.

Part IV: Data Analysis (30pts total)

Use the acceleration and tension data to create two scatter plots of Acceleration vs Tension in Excel.

The first plot should use the data point (0, 0) in addition to the data you collected. However, do not force your fit through zero. Display the equation of the fit on the plot, and make sure the coefficients of the fit equation are displayed to at least four decimal places. Each axis should have an appropriate label.

The second plot should only utilize the data you collected. Do not use (0, 0) as a data point. Again, do not force your fit through zero. Display the equation of your fit on the plot with the coefficients displayed to four decimal places, and label each axis with an appropriate label.

Using the Acceleration vs Tension plots, determine the mass of your cart without weighing it, and record the mass in grams on the Data Sheet.

Part V: Mass Comparison (30pts total)

Bring your cart to the front of the room, and request your TA to weigh your cart. Your TA will record the mass in grams on your data sheet and calculate the percent error.

Name: _____

Banner ID: _____

Lab Group ID: _____

Number of Lab Partners: _____

Data Sheet Newton's 2nd Law Activity

Hints:

- 1. Be mindful of the cord connected to the force sensor. The cord must be held such that it does not drag or otherwise exert a force on the cart.
- 2. The Force Sensor must be TARED before each data run.
- 3. Adjust the pulley such that the string over the track will be parallel with the track.
- 4. The plastic mass hanger weighs 5g.
- 5. Use a Torpedo Level to level the track.

Part I Equipment

After the Record Button is pressed, how far will the cart travel before data will stop being collected?

What units will Tension be measured in? _____

How much force should be applied to the hook of the force sensor while TARING the Force Sensor?

Part II Data Collection (20pts total)

Static Tension with 50 g Hanging (N)	Calculated Static Tension with 50 g Hanging (N)	Dynamic Tension with 50 g Accelerating the Cart (N)	

Use an Algebraic expression(s) to show why the Dynamic Tension always has to be less than the Static Tension when a cart is accelerated by a hanging mass on a frictionless, level track.

TA's Initials verifying your Static and Dynamic Tension Data and Plot:

Print and attach your Static and Dynamic Tensions vs time plot to the data sheet.

Mass (g)	mg (N)	Acceleration (m/s ²)	Dynamic Tension (N)	
0	0	0	0	
20				
30				
40				
50				
60				

Part III Data Collection for Newton's 2nd Law (20pts total)

Carefully compare your mg and Dynamic Tension data as you make each run, and repeat runs as necessary.

Part IV Data Analysis (30pts total)

Print and attach both plots of Acceleration vs Tension.

Predicted Mass of the Cart [Using (0, 0) as a Data point] in grams: _____(B)

Predicted Mass of the Cart [Without using (0, 0) as a Data point] in grams: _____ (C)

Describe how your group determined the mass of the cart.

Part V Mass Comparison (30pts total)

Actual Mass as weighed by TA in grams (A)	
Predicted Mass of cart in grams [Using 0,0 as a Data point] (B):	Percent Difference = $\frac{ A - B }{A} x 100\% =$
Predicted Mass of cart in grams [Without using 0,0 as a Data Point (C):	Percent Difference = $\frac{ A - C }{A} \times 100\% =$

Percent Difference	<=6%	<=9%	<=12%	<=15%	>15%	
Points	30	25	20	15	10	